教学计划应该具有合理性和可操作性,能够有效地引导学生的学习和提升教学效果。希望这些教学计划范例能够给大家提供一些有益的启示和参考,让我们共同提高教育教学的质量和水平。
反比例的意义教学设计
1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
掌握成反比例量的变化规律及其特征。
课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。
教学步骤教师活动学生活动。
一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?
2、判断下面两种量是否成正比例?为什么?
时间一定,行驶的路程和速度。
除数一定,被除数和商。
3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?
4、导入新课:
如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充。
二、探究新知1、出示例3的.表格(略)。
学生填表。
2、小组讨论:
(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?
(2)你能找出它们变化的规律吗?
(3)猜一猜,这两种量成什么关系?
3、全班交流。
4、完成“试一试”
学生独立填表。
思考题中所提出的问题。
组织交流,再次感知成反比例的量。
根据学生的回答,板书:x×y=k(一定)。
揭示板书课题。
学生填表。
小组讨论、交流。
学生初步概括。
相互补充与完善。
独立填表。
交流汇报。
学生概括。
三、巩固应用1、练一练。
每袋糖果的粒数和装的袋数成反比例吗?为什么?
2、练习十三第6题。
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第7题。
先独立思考作出判断,再有条理地说明判断的理由。
4、练习十三第8题。
先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。
5、思考:
100÷x=y,那么x和y成什么比例?为什么?
6、同桌学生相互出题,进行判断并说明理由。
讨论、交流。
独立完成,集体评讲。
说一说。
填一填,议一议。
讨论。
相互出题解答。
四、总结反思。
反比例的意义教学设计
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排了1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。
反比例函数教学设计
2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题。
一、创设情境。
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质。
二、探究归纳。
1.画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0.
解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等。
3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola).
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).
学生讨论、交流以下问题,并将讨论、交流的结果回答问题。
1.这个函数的图象在哪两个象限?和函数的图象有什么不同?
2.反比例函数(k0)的图象在哪两个象限内?由什么确定?
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
注1.双曲线的两个分支与x轴和y轴没有交点;
2.双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。
三、实践应用。
例1若反比例函数的图象在第二、四象限,求m的值。
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值。
解由题意,得解得.
例2已知反比例函数(k0),当x0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限。
分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方。
解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限。
(1)求这个函数的解析式,并画出图象;
(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上。
解(1)设:反比例函数的解析式为:(k0).
而反比例函数的图象过点(1,-2),即当x=1时,y=-2.
所以,k=-2.
点a的坐标为.
点a关于x轴的对称点不在这个图象上;
点a关于y轴的对称点不在这个图象上;
点a关于原点的对称点在这个图象上;
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当-3时,求此函数的最大值和最小值。
解(1)由反比例函数的定义可知:解得,m=-2.
(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;。
当x=-3时,y最小值=.
所以当-3时,此函数的最大值为8,最小值为.
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象。
解(1)因为100=5xy,所以.
(2)x0.
(3)图象如下:
说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、交流反思。
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
五、检测反馈。
1.在同一直角坐标系中画出下列函数的图象:
(1);(2).
2.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时,?
3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。
4.已知反比例函数经过点a(2,-m)和b(n,2n),求:
(1)m和n的值;
(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1x2,试比较y1和y2的大小。
反比例的意义教学设计
2.通过观察、比较、归纳,提高学生综合概括推理的能力.。
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。
教学重点。
教学难点。
教学过程。
一、导入新课。
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问。
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量。
(三)教师谈话。
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学。
(一)成正比例的量。
例1.一列火车行驶的时间和所行的路程如下表:
时间(时)。
1
2
3
4
5
6
7
8
……。
路程(千米)。
90。
180。
270。
360。
450。
540。
630。
720。
……。
1.写出路程和时间的比并计算比值.。
(1)。
(2)2表示什么?180呢?比值呢?
(3)这个比值表示什么意义?
(4)360比5可以吗?为什么?
……。
2.思考。
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度。
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。
3.小结:有什么规律?
教师板书:商不变。
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。
工效(个)。
10。
20。
30。
40。
50。
60。
……时间(时)。
60。
30。
20。
15。
12。
10。
……。
2.教师提问。
(1)计算工效和时间的乘积.。
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。
3.小结:有什么规律?(板书:积不变)。
(三)不成比例的量。
1.出示表格。
运走的吨数。
10。
20。
30。
40。
剩下的吨数。
90。
80。
70。
60。
总吨数(和不变)。
100。
100。
100。
100。
2.教师提问。
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的`规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。
(四)结合三组题观察、讨论、总结变化规律.。
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化。
不同点:第一组商不变,第二组积不变,第三组和不变.。
总结:
4.强调第三组题中两种相关联的量叫做不成比例。
5.教师提问。
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式。
三、巩固练习。
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔。
总价(元)。
1.2。
2.4。
3.6。
4.8。
6
7.2。
支数。
1
2
3
4
5
6
单价(元)。
1
2
4
5
10。
支数。
100。
50。
25。
20。
10。
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比。
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽。
4.修一条路,已修的米数和剩下的米数.。
四、课堂总结。
五、课后作业。
(一)判断下面每题中的两种量是不是成正比例,并说明理由.。
1.苹果的单价一定,购买苹果的数量和总价.。
2.轮船行驶的速度一定,行驶的路程和时间.。
3.每小时织布米数一定,织布总米数和时间.。
4.长方形的宽一定,它的面积和长.。
(二)判断下面每题中的两种量是不是成反比例,并说明理由.。
1.煤的总量一定,每天的烧煤量和能够烧的天数.。
2.种子的总量一定,每公顷的播种量和播种的公顷数.。
3.李叔叔从家到工厂,骑自行车的速度和所需时间.。
4.华容做12道数学题,做完的题和没有做的题.。
反比例函数复习课教学设计
公开课上完了,总的感觉有成功的地方,也有不足之处。我认为本堂课成功的做法有以下几方面:
一、定位较准,立足于本校学情。由于学生基础较差,本节复习是按知识点复习,目的是落实知识点和掌握一些基本的题型,通过教学来看目标已达成。
二、习题设计合理,立足于思维训练。本节课每个知识点都设计了针对性的变式练习,通过练习学生的解体技巧、方法、思维都得到了训练。
三、注重了数学思想方法的渗透。在反比例函数的性质教学时,紧紧抓住关键词语,突破难点。性质强调“在同一象限内”,而我们学生往往忽略这个问题,无论是怎样的两点,都直接用性质,对此,采用讨论的观点,结合图像观察,让学生看到理解到:在同一象限内可直接用性质,不在同一象限内,一、二象限的点的纵坐标永远大于三、四象限内点的纵坐标。这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结出这其中体现出的数学思想方法:分类讨论和数形结合的思想方法。
四、大胆尝试信息技术教学。“班班通”走进了课堂,信息技术的教学正冲击着传统的数学课堂,虽然白板的功能还没完全了解,使用的也不够熟练,但也能体现出信息技术在数学教学的灵活性、直观性,对本节课“反比例函数的性质”等多处教学都起到一定的作用,提高了课堂效率。
不足之处:。
一、预见性不够。这主要体现在知识回顾中的第二题,本来打算一点而过,结果学生的回答偏离了老师的预想,老师势必站在学生的角度给他们一一纠正,从而浪费了时间,自己对于突发事件的处理灵活性还不够,掌控课堂的能力有待提高。
二、对学生的情感关注太少。本来想营造一种和谐的课堂气氛,学生因为紧张回答问题不积极,不敢大胆发表自己的观点,课堂气氛死气沉沉,没有焕发出学生的激情。如果在一开始就用生动活泼激趣的语言导入课题,在教学过程中对少数同学的回答能及时给予表扬和激励,不但能消除学生的紧张情绪,也能激发学生的兴趣,坚定学习的信心。
三、角色转换不彻底。在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.不能大胆放心把课堂交还给学生.今后还需要改进的地方:
一、在上课过程中,要始终关注学生的情感。因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。
二、不断学习新的教育理论,不断更新教学观念,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
三、注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。
四、努力学习多媒体软件设计和制作,把它作为教师备课、教学改革的工具,使电脑、网络、光盘、白板等现代媒体成为像黑板、粉笔一样的得心应手的工具,恰如其分地应用于日常课堂教学中,真正为教学服务。
有反思才会有进步,作为身处课程改革第一线的教育工作者,应迅速转变传统的教育观念,勇于创新,积极接受挑战。
反比例的意义教学设计
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
(一)复习猜想导入,引出问题。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望。
(二)共同探索,总结方法。
1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。(1)我们先来看一个实验。
高度(厘米)。
底面积(平方厘米)10。
体积(立方厘米)。
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的乘积都是300.(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
(三)运用方法,解决问题。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
(四)反馈巩固,分层练习。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
(五)课堂总结,提升认识。
反比例。
高度(厘米)。
底面积(平方厘米)10。
体积(立方厘米)。
300。
300。
300。
300300高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。高×底面积=水的体积(一定)反比例关系式:x×y=k(一定)。
反比例的意义教学设计
教学目的:
1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。2.使学生进一步认识事物之间的相互联系和发展变化规律。3.初步渗透函数思想。
一、谈话导入:
师:咱们一块做几道题判断一下。出示:
1、除数一定,被除数和商。
2、单产量一定,总产量和面积。
3、加数一定,和和另一个加数。
4、每张纸厚度一定,总厚度和纸的张数指名说并说请判断依据。
师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)。
二、学习。
师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)。
师:到底同学们的猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流。
学生自己填,在小组活动,师巡视学生台前展示交流。
师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?
指名说,(大屏幕出示红色字)。
师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。
出示表格,明确正比例和反比例的异同点。
师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?
三、练习。
1、书上51页8、9、10题,独立写,集体交流。
2、书上51页11题,指名交流,说理。
四、总结。
师:这节课你有什么收获?指名说。
师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。
反比例的意义教学设计
1.知识与技能。
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
2.过程与方法。
学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。
3.情感态度与价值观。
经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。
教学重点。
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
教学难点。
反比例函数解析式的确定。
教学过程。
一、创设情境,导入新课。
问题1:(课件展示)。
问题2:(课件展示)。
问题3:(课件展示)。
下列问题中,变量间的`对应关系可用怎样的函数关系式表示?
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。
(2)某住宅小区要种植一个面积为1000o的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。
(3)已知某市的总面积为1.68×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。
二、观察思考,明晰概念。
1.这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?
2.这些函数关系式与正比例函数、一次函数有何不同?
3.这些函数关系式有什么共同的特征?
4.各关系式中两变量之间有什么关系?
5.你能归纳出反比例函数的概念吗?
通过回答以上问题,师生共同总结反比例函数的概念。
三、小组讨论,领悟概念。
1.反比例函数关系式中有几个变量?
2.变量之间存在什么关系?
3.反比例函数还有其他形式吗?若有请指出。
4.反比例函数中,变量x、y和常数k有什么具体要求?为什么?
四、内化新知,拓展应用。
1.下列函数中哪些是反比例函数?请指出反比例函数中的k值。
2.已知y是x的反比例函数,且当x=2时,y=6。
(1)写出y与x的函数关系式。
(2)求当x=4时,y的值。
3.当x为何值时函数y=x-2a-4是反比例函数?
4.已知函数y=y1+y2,与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。
(1)求y与x的函数关系式。
(2)当x=-2时,求函数y的值。
五、课堂练习。
师生共同完成教课书第40页的练习题。
六、课堂小结。
1.通过本节课的学习你对反比例函数有怎样的认识?
2.反比例函数与正比例函数的区别有哪些?
七、作业布置。
教材中本节习题17.1第1、2、4题。
(责任编辑赵永玲)。
反比例函数教学设计
教学目标:
教学重点:
教学程序:
一、新授:
1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?
(2)、当木板面积为0.2m2时,压强是多少?
答:p=3000pa。
(3)、如果要求压强不超过6000pa,木板的面积至少要多少?
答:2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做。
1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压u=36v,i=60k。
r()345678910。
i(a)。
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)。
(1)分别写出这两个函数的表达式;。
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;。
随堂练习:
p145~1461、2、3、4、5。
作业:p146习题5.41、2。
文档为doc格式。
反比例函数教学设计
由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的一般形式。
1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。
1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。
2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。
1.认识到数学知识是有联系的,逐步感受数学内容的系统性;
2.通过分组讨论,培养合作交流意识和探索精神。
启发引导、分组讨论。
1课时。
课件。
复习引入。
2.在上一学段,我们研究了现实生活中成反比例的两个量。
反比例函数实际应用教学设计精选
教学目标:
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.教学重点:
结合图象分析总结出反比例函数的性质;
教学用具:直尺。
教学方法:小组合作、探究式。
教学过程:
我们在小学学过反比例关系.例如:当路程s一定时,时间t与速度v成反比例。
即vt=;
当矩形面积s一定时,长a与宽b成反比例,即ab=。
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(s是常数)。
(s是常数)。
解:列表。
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)。
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小.同样可以推出的图象的性质.(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.函数的图象性质的讨论与次类似.4、小结:
反比例函数实际应用教学设计精选
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
二、重、难点。
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式。
3.难点的突破方法:
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。
(3)(k0)还可以写成(k0)或xy=k(k0)的形式。
三、例题的意图分析。
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
《反比例的意义》数学教学设计【】
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
2、成正比例的量有什么特征?
二、探究新知。
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。
2、教学p42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
a、表中有哪两种量?这两种量相关联吗?为什么?
b、水的高度是否随着底面积的变化而变化?怎样变化的?
d、这个积表示什么?写出表示它们之间的数量关系式。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)。
三、巩固练习。
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节。
这节课我们学习了成反比例的量,知道了什么样的'两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习。
p45~46练习七第6~11题。
反比例函数教学设计
上完此节课后,我回忆着这节课的段段细节,不断思索着这节课的成功之处与不足之处,希望能使自己在这节课中获得更大的收获。
在这节课中,我认为最成功之处是比较充分地调动了学生的积极性、主动性。由于此节课是以现在最热门的房产买卖为切入点,从生活中买房的例子出发,从一开始就吸引了学生的注意力,充分引发了学生学习的兴趣,从而使得这节课能得以发挥。由于学生的兴趣得以激发,所以在教授新课的过程中,师生得以互动。在正反比例解析式及其性质的比较中,学生能自主分析,解决问题。在图象画法比赛中,许多学生能积极指出图象的优缺点,并且不断发现图象画法的不足之处。这样让学生自己发现问题,自己解决问题,既提高了他们画图的本领,更为后面学习图象性质做了铺垫。当对图象性质进行小组讨论时,许多学生能积极思考,互相反驳,互相提问解决问题,并且运用类比方法进行分析。应当说这节课让学生得到了一个良好的自主学习的环境,整节课学生积极举手发言,场面比较热烈,使我也能充分发挥。
在课程设计中,我将反比例函数比较数学化的问题实际化,从实际出发又回到实际也是比较合理的。由于现在学生知识面的扩大,数学教学应该为实际服务越来越被大家接受,因此我认为联系实际是很重要的。
在这节课中,多媒体教学也起了举足轻重的地位。在电脑课件的帮助下,这节课变得比较充实丰富。而电脑动画更是使复杂问题变得简单化。当然这节课存在很多不足之处。例如后半节课有些紧凑等等。
反比例函数教学设计
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
引导学生理解反比例的意义。
利用反比例的意义,正确判断两种量是否成反比例。
一、复习铺垫。
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究。
(一)教学例1。
1、出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间。
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
教师板书:零件总数。
每小时加工数×加工时间=零件总数。
3、小结。
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的`零件总数是一定的。
(二)教学例2。
1、出示例2,根据题意,学生口述填表。
2、教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数。
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1、请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2、教师小结。
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
教师板书:xy=k(一定)。
三、课堂小结。
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习。
完成教材43页做一做。
五、课后作业。
练习七6、7、8、9题。